NewsPC & Computers

Could Intel Be Planning a Return to HEDT with “Alder Lake-X”?

Interesting news … could we see an imminent new chipset for this high-end desktop (HEDT) market?

Taken from TPU … Enthused with its IPC leadership, Intel is possibly planning a return to the high-end desktop (HEDT) market segment, with the “Alder Lake-X” line of processors, according to a Tom’s Hardware report citing a curious-looking addition to an AIDA64 beta change-log. The exact nature of “Alder Lake-X” (ADL-X) still remains a mystery—one theory holds that ADL-X could be a consumer variant of the “Sapphire Rapids” microarchitecture, much like how the 10th Gen Core “Cascade Lake-X” was to “Cascade Lake,” a server processor microarchitecture. Given that Intel is calling it “Alder Lake-X” and not “Sapphire Rapids-X,” it could even be a whole new client-specific silicon. What’s the difference between the two? It’s all in the cores.

While both “Alder Lake” and “Sapphire Rapids” come with “Golden Cove” performance cores (P-cores), they use variants of it. Alder Lake has the client-specific variant with 1.25 MB L2 cache, a lighter client-relevant ISA, and other optimizations that enable it to run at higher clock speeds. Sapphire Rapids, on the other hand, will use a server-specific variant of “Golden Cove” that’s optimized for the Mesh interconnect, has 2 MB of L2 cache, a server/HPC-relevant ISA, and a propensity to run at lower clock speeds, to support the silicon’s overall TDP and high CPU core-count.

 

 

Intel probably learned from “Skylake-X” and “Cascade Lake-X” that an HEDT processor should match or exceed the mainstream-desktop part at everything (including gaming), so its buyers don’t feel like performance of IPC-sensitive/less-parallelized workloads is being traded in for brute multi-threaded performance. ADL-X could hence even be a whole new silicon+package combination, with “Golden Cove” client cores, perhaps some “Gracemont” E-core clusters, and characteristic-HEDT features, such as more memory channels and more PCIe lanes; but most importantly, the ability for the processor to run some of its P-cores at very high clock-speeds.

Source: TPU

 

Related posts

Leave a Comment

* By using this form you agree with the storage and handling of your data by this website.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More