NewsPC & Computers

Google Announces Willow State-of-the-Art 105-Qubit Quantum Chip

Today I’m delighted to announce Willow, our latest quantum chip. Willow has state-of-the-art performance across a number of metrics, enabling two major achievements.

  • The first is that Willow can reduce errors exponentially as we scale up using more qubits. This cracks a key challenge in quantum error correction that the field has pursued for almost 30 years.
  • Second, Willow performed a standard benchmark computation in under five minutes that would take one of today’s fastest supercomputers 10 septillion (that is, 1025) years — a number that vastly exceeds the age of the Universe.

The Willow chip is a major step on a journey that began over 10 years ago. When I founded Google Quantum AI in 2012, the vision was to build a useful, large-scale quantum computer that could harness quantum mechanics — the “operating system” of nature to the extent we know it today — to benefit society by advancing scientific discovery, developing helpful applications, and tackling some of society’s greatest challenges. As part of Google Research, our team has charted a long-term roadmap, and Willow moves us significantly along that path towards commercially relevant applications.

Exponential quantum error correction — below threshold!

Errors are one of the greatest challenges in quantum computing, since qubits, the units of computation in quantum computers, have a tendency to rapidly exchange information with their environment, making it difficult to protect the information needed to complete a computation. Typically the more qubits you use, the more errors will occur, and the system becomes classical.

Today in Nature, we published results showing that the more qubits we use in Willow, the more we reduce errors, and the more quantum the system becomes. We tested ever-larger arrays of physical qubits, scaling up from a grid of 3×3 encoded qubits, to a grid of 5×5, to a grid of 7×7 — and each time, using our latest advances in quantum error correction, we were able to cut the error rate in half. In other words, we achieved an exponential reduction in the error rate. This historic accomplishment is known in the field as “below threshold” — being able to drive errors down while scaling up the number of qubits. You must demonstrate being below threshold to show real progress on error correction, and this has been an outstanding challenge since quantum error correction was introduced by Peter Shor in 1995.

There are other scientific “firsts” involved in this result as well. For example, it’s also one of the first compelling examples of real-time error correction on a superconducting quantum system — crucial for any useful computation, because if you can’t correct errors fast enough, they ruin your computation before it’s done. And it’s a “beyond breakeven” demonstration, where our arrays of qubits have longer lifetimes than the individual physical qubits do, an unfakable sign that error correction is improving the system overall.

As the first system below threshold, this is the most convincing prototype for a scalable logical qubit built to date. It’s a strong sign that useful, very large quantum computers can indeed be built. Willow brings us closer to running practical, commercially-relevant algorithms that can’t be replicated on conventional computers.

10 septillion years on one of today’s fastest supercomputers

As a measure of Willow’s performance, we used the random circuit sampling (RCS) benchmark. Pioneered by our team and now widely used as a standard in the field, RCS is the classically hardest benchmark that can be done on a quantum computer today. You can think of this as an entry point for quantum computing — it checks whether a quantum computer is doing something that couldn’t be done on a classical computer. Any team building a quantum computer should check first if it can beat classical computers on RCS; otherwise there is strong reason for skepticism that it can tackle more complex quantum tasks. We’ve consistently used this benchmark to assess progress from one generation of chip to the next — we reported Sycamore results in October 2019 and again recently in October 2024.

Willow’s performance on this benchmark is astonishing: It performed a computation in under five minutes that would take one of today’s fastest supercomputers 1025 or 10 septillion years. If you want to write it out, it’s 10,000,000,000,000,000,000,000,000 years. This mind-boggling number exceeds known timescales in physics and vastly exceeds the age of the universe. It lends credence to the notion that quantum computation occurs in many parallel universes, in line with the idea that we live in a multiverse, a prediction first made by David Deutsch.

These latest results for Willow, as shown in the plot below, are our best so far, but we’ll continue to make progress.

Source: Google

 

Related posts

Leave a Comment

* By using this form you agree with the storage and handling of your data by this website.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More